molprop.applicability_domain_methods.support_vector_machine.ocsvm.SVM_AD
- class molprop.applicability_domain_methods.support_vector_machine.ocsvm.SVM_AD(model_name='svm_ad', dataset=None, kernel='rbf', gamma='scale', nu=0.01, tol=1e-10, **kwargs)
Bases:
ABCClass for Applicability domain (AD) via support vector machine (SVM).
- _dataset
string Name of the dataset model should be/is trained on.
- _model_name
string, optional Name of the model that is used for saving model parameters. Should be unique. By default: “gnn_dataset”
- kernel
string, optional Kernel that will be used for SVM (corresponding to sklearn kernels) By default: “rbf”
- gamma
string, optional Hyperparameter gamma that will be used for SVM (corresponding to sklearn gamma) By default: “scale” (autoscale)
- nu
float, optional Hyperparameter nu that will be used for SVM (corresponding to sklearn kernels) By default: 0.01
- tol
string, optional tolerance that will be used for SVM By default: 1e-10
Methods
__init__inferload_modelpredictRead latent space data stored in csv file (please note csv file should have column named 'latent_vector{_<model_id>}' with latent space arrays for each graph input.
save_modeltrain
- property dataset
Dataset the model is trained on.
- property hyperparameters
Dataset the model is trained on.
- property model_name
Model name
- read_csv_data(file_path, model_id=None, additional_columns=None)
Read latent space data stored in csv file (please note csv file should have column named ‘latent_vector{_<model_id>}’ with latent space arrays for each graph input.
- Parameters:
file_path – string Filepath to csv file wherein the input data is stored (either for train or test data).
model_id – int, optional Identifier for GNN model. Only necessary when GNN ensemble is used, otherwised redundant. By default: None
additional_columns – array-like, optional If additional columns should be read in, the column names can be defined here. An additional array is returned. By default: []
- Returns:
latent_vectors (, additional_columns) Returns latent vectors in array format (+ additional columns in array format)
- property svm
SVM that is trained.